EJERCICIOS DE SELECTIVIDAD INTEGRALES INDEFINIDAS.

Calcula
$$\int \frac{-x^2}{x^2 + x - 2} \, dx$$

MATEMÁTICAS II. 2015. JUNIO. EJERCICIO 2. OPCIÓN A

Determina la función $f:(0,+\infty)\to\mathbb{R}$ sabiendo que $f''(x)=\ln(x)$ y que su gráfica tiene tangente horizontal en el punto P(1,2). (ln denota la función logaritmo neperiano).

MATEMÁTICAS II. 2015. JUNIO. EJERCICIO 2. OPCIÓN B.

Calcula
$$\int \frac{dx}{(x-2)\sqrt{x+2}}$$
 (Sugerencia $\sqrt{x+2} = t$)

MATEMÁTICAS II. 2015. RESERVA 1. EJERCICIO 2. OPCIÓN A.

Calcula
$$\int e^{2x} sen(x) dx$$

MATEMÁTICAS II. 2015. RESERVA 2. EJERCICIO 2. OPCIÓN B.

Sea f la función definida por $f(x) = \frac{\ln(x)}{2x}$ para x > 0 (In denota la función logaritmo neperiano)

y sea F la primitiva de f tal que F(1) = 2.

- a) Calcula F'(e).
- b) Halla la ecuación de la recta tangente a la gráfica de F en el punto de abscisa x = e.

MATEMÁTICAS II. 2015. RESERVA 3. EJERCICIO 2. OPCIÓN A.

Sea f la función definida por $f(x) = \frac{x^2 + 1}{x^2(x - 1)}$ para $x \ne 0$ y $x \ne 1$ y sea F la primitiva de f cuya

gráfica pasa por el punto $P(2, \ln 2)$ (ln denota logaritmo neperiano).

- a) Calcula la recta tangente a la gráfica de F en el punto P.
- b) Determina la función F.

MATEMÁTICAS II. 2015. RESERVA 4. EJERCICIO 2. OPCIÓN B.

Sea f la función definida por $f(x) = x \ln(x+1)$ para x > -1 (ln denota el logaritmo neperiano).

Determina la primitiva de f cuya gráfica pasa por el punto (1,0).

MATEMÁTICAS II. 2014. JUNIO. EJERCICIO 2. OPCIÓN B.

Determina una función derivable $f: \mathbb{R} \to \mathbb{R}$ sabiendo que f(1) = -1 y que

$$f'(x) = \begin{cases} x^2 - 2x & si \quad x < 0 \\ e^x - 1 & si \quad x \ge 0 \end{cases}$$

MATEMÁTICAS II. 2014. RESERVA 1. EJERCICIO 2. OPCIÓN A.

EJERCICIOS DE SELECTIVIDAD INTEGRALES INDEFINIDAS.

Sea $f:(-1,3)\to\mathbb{R}$ la función definida por $f(x)=\frac{x+9}{(x+1)(x-3)}$. Determina la primitiva de f

cuya gráfica pasa por el punto (1,0).

MATEMÁTICAS II. 2014. RESERVA 3. EJERCICIO 2. OPCIÓN B.

Calcula
$$\int \frac{dx}{2x(x+\sqrt{x})}$$
 (Sugerencia: cambio de variable $t=\sqrt{x}$)

MATEMÁTICAS II. 2014. RESERVA 4. EJERCICIO 2. OPCIÓN A

Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = e^x \cdot \cos x$

- a) Calcula la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = 0.
- b) Calcula la primitiva de f cuya gráfica pasa por el punto (0,0)

MATEMÁTICAS II. 2014. RESERVA 4. EJERCICIO 2. OPCIÓN B.

Sea $g: \mathbb{R} \to \mathbb{R}$ la función definida por $g(x) = \ln(x^2 + 1)$ (donde ln denota el logaritmo neperiano). Calcula la primitiva de g cuya gráfica pasa por el origen de coordenadas.

MATEMÁTICAS II. 2013. JUNIO. EJERCICIO 2. OPCIÓN B

Halla
$$\int \frac{x+1}{1+\sqrt{x}} \, dx$$
 . Sugerencia: se puede hacer el cambio de variable $t=\sqrt{x}$

MATEMÁTICAS II. 2013. RESERVA 2. EJERCICIO 2. OPCIÓN A

Sea $g:(0,+\infty)\to\mathbb{R}$ la función definida por $g(x)=\frac{1}{x+\sqrt{x}}$

Determina la primitiva de g cuya gráfica pasa por el punto P(1,0). Sugerencia: se puede hacer el cambio de variable $t=\sqrt{x}$

MATEMÁTICAS II. 2013. RESERVA 3. EJERCICIO 2. OPCIÓN A

- a) Determina la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) = (2x+1)e^{-x}$ y su gráfica pasa por el origen de coordenadas.
- b) Calcula la recta tangente a la gráfica de f en el punto de abscisa x = 0.

MATEMÁTICAS II. 2013. SEPTIEMBRE. EJERCICIO 2. OPCIÓN A